Charge Transport Velocity in Semiconductors
Abstract
In this paper, we analyze the variation of charge carrier transport velocity under different operational conditions. The study investigates the effects of parameters such as temperature, electric field strength, carrier mobility, doping concentration, and effective mass on both drift and thermal components of carrier velocity. Based on the results, we formulate practical recommendations for adjusting these conditions to achieve desired carrier velocities, which can enhance the performance and efficiency of micro- and nanoelectronics devices. The findings provide insights into optimizing charge transport for advanced semiconductor applications.
Keywords:
Charge carrier transport, Velocity control, Drift and thermal velocity, Semiconductor device optimizationReferences
- [1] Aleksandrov, O. V, Tyapkin, N. S., Mokrushina, S. A., & Fomin, V. N. (2022). The effect of ionizing irradiation on the charge distribution and breakdown of MOSFETs. Semiconductors, 56(3), 160–163. https://doi.org/10.1134/S1063782622020038%0A%0A
- [2] Zhukov, A. E., Kryzhanovskaya, N. V, Maximov, M. V, Egorov, A. Y., Pavlov, M. M., Zubov, F. I., & Asryan, L. V. (2011). Semiconductor lasers with asymmetric barrier layers: An approach to high temperature stability. Semiconductors, 45(4), 530–535. https://doi.org/10.1134/S1063782611040233%0A%0A
- [3] Lebedev, A. A., Kozlovski, V. V, Levinshtein, M. E., Malevsky, D. A., Oganesyan, G. A., Strel’chuk, A. M., & Davydovskaya, K. S. (2022). Annealing high-voltage 4 h-sic schottky diodes irradiated with electrons at a high temperature. Semiconductors, 56(3), 189–194. https://doi.org/10.1134/S1063782622020099%0A%0A
- [4] Lebedev, A. A., Kozlovski, V. V, Davydovskaya, K. S., & Levinshtein, M. E. (2021). Radiation hardness of silicon carbide upon high-temperature electron and proton irradiation. Materials, 14(17), 4976. https://doi.org/10.3390/ma14174976
- [5] Xu, Y., Sui, J., Cao, F., Li, X., Yang, J., & Wang, Y. (2021). Low temperature Ni/Si/Al ohmic contacts to p-type 4H-SiC. Solid-state electronics, 186, 108106. https://doi.org/10.1016/j.sse.2021.108106
- [6] Lebedev, A. A., Ivanov, A. M., & Strokan, N. B. (2004). Radiation resistance of SiC and nuclear-radiation detectors based on SiC films. Semiconductors, 38(2). https://doi.org/10.1134/1.1648363%0A
- [7] Kalinina, E. V, Kossov, V. G., Yafaev, R. R., Strel’chuk, A. M., & Violina, G. N. (2010). A high-temperature radiation-resistant rectifier based on p+-n junctions in 4H-SiC ion-implanted with aluminum. Semiconductors, 44(6), 778–788. https://doi.org/10.1134/S1063782610060151%0A%0A
- [8] Belyaev, A. E., Boltovets, N. S., Bobyl, A. V, Ivanov, V. N., Kapitanchuk, L. M., Kladko, V. P., … & others. (2010). Radiation effects and interphase interactions in ohmic and barrier contacts to indium phosphide as induced by rapid thermal annealing and irradiation with $γ$-ray 60Co photons. Semiconductors, 44(12), 1559–1566. https://doi.org/10.1134/S1063782610120055
- [9] Ermolovich, I. B., Milenin, V. V, Red’ko, R. A., & Red’ko, S. M. (2009). Specific features of recombination processes in CdTe films produced in different temperature conditions of growth and subsequent annealing. Semiconductors, 43(8), 980–984. https://doi.org/10.1134/S106378260908003X%0A%0A
- [10] Shalimova, K. V. (1985). Physics of semiconductors.
- [11] Gaidar, G. P. (2014). On the kinetics of electron processes in 60Co $γ$-irradiated n-Ge single crystals. Semiconductors, 48(9), 1141–1144. https://doi.org/10.1134/S1063782614090097%0A%0A