A Comprehensive Study of the Principles and Trends in AC Circuits: Essential Component in Electro-mechanical Systems and Industries

Authors

  • Aniekan Ikpe Department of Science Technology, Akwa Ibom State Polytechnic, Ikot Osurua, PMB 1200, Nigeria.
  • Imoh Ime Ekanem Department of Mechanical Engineering, Akwa Ibom State Polytechnic, Ikot Osurua, PMB.‎ ‎1200, Nigeria‎.
  • Aniekan Essienubong Ikpe Department of Mechanical Engineering, Akwa Ibom State Polytechnic, Ikot Osurua, PMB.‎ ‎1200, Nigeria‎.

Keywords:

AC Circuits, Electro-mechanical industries, System stability, Power transmission

Abstract

The evolution of AC circuits in electro-mechanical applications has been driven by the need for efficient and reliable power transmission and control in various Electro-mechanical industrial and commercial settings. With the increasing demand for automation and electrification in modern society, the development of AC circuits has become crucial for the operation of a wide range of electro-mechanical systems. One of the key challenges in the evolution of AC circuits is the need to balance the conflicting requirements of efficiency, reliability, and cost-effectiveness. As electro-mechanical systems become more complex and interconnected, the design and implementation of AC circuits require astute optimization to ensure effective performance and safety. A detailed literature review was conducted with reference to relevant research articles, textbooks, and technical documents on the evolution of AC circuits in electro-mechanical applications. The selected sources were analyzed to extract key information on the advancements in AC circuits and their implications in electro-mechanical industries. The review of literature revealed significant developments in AC circuits, including the introduction of solid-state devices, digital control systems, and advanced power electronics. These advancements have led to improvements in efficiency, reliability, and performance in electro-mechanical systems. For example, the use of variable frequency drives has enabled precise control of motor speed and torque, resulting in energy savings and reduced maintenance costs. Furthermore, the integration of smart grid technologies has enhanced the monitoring and management of power distribution systems, leading to improved reliability and stability. Hence, the evolution of AC circuits has had a profound impact on the design and operation of electro-mechanical systems, paving the way for more efficient and sustainable technologies.

References

‎[1] ‎ Arfken, G. (1984). International edition university physics. Elsevier. DOI:10.1016/b978-0-120-59858-8.x5001-‎‎8‎

‎[2] ‎ Rahmani-Andebili, M. (2021). AC electrical circuit analysis. Switzerland: Springer International. DOI: ‎‎10.1007/978-3-030-60986-3 ‎

‎[3] ‎ Pacuku, E. (2016). Design, maintain, test batteries in mission critical facilities: engineering design, ‎maintenance, and testing of batteries in mission critical facilities is imperative for proper operation ‎and safety. Consulting specifying engineer, 53(11), DE1--DE1.‎

‎[4] ‎ Kezunovic, M. (2005). Fundamentals of power system protection. In The electrical engineering handbook ‎‎(pp. 787–803). Elsevier. DOI: 10.1016/B978-012170960-0/50058-X

‎[5] ‎ Vaillancourt, K., Simbolotti, G., & Tosato, G. (2014). Electricity transmission and distribution. IEA ‎etsap-technology brief e, 12, 2014.‎

‎[6] ‎ Matejic, S. (2015). The essential Nikola Tesla, peacebuilding endeavour. Tesla Memory Project, UNESCO ‎Center for Peace, TESLIANUM Energy Innovation Center. https://prljevic.com/wp-‎content/uploads/2020/07/The-essential-Nikola-Tesla_prezentacija-publikacije_Harvard.pdf

‎[7] ‎ Allerhand, A. (2017). A contrarian history of early electric power distribution [scanning our past]. ‎Proceedings of the IEEE, 105(4), 768–778. DOI:10.1109/JPROC.2017.2677558‎

‎[8] ‎ Rakesh, S. (2015). Power electronics digital notes. Mallareddycollege of Engineering and Technology, ‎‎(Autonomous Institution – UGC, Govt. of India). https://www.slideshare.net/slideshow/power-‎electronics-digital-notespdf/255429986‎

‎[9] ‎ Oyedepo, S. O. (2012). Energy and sustainable development in Nigeria: the way forward. Energy, ‎sustainability and society, 2(15), 1–17. DOI:10.1186/2192-0567-2-15‎

‎[10] ‎ Strielkowski, W., Civín, L., Tarkhanova, E., Tvaronavičienė, M., & Petrenko, Y. (2021). Renewable ‎energy in the sustainable development of electrical power sector: a review. Energies, 14(24), 8240. ‎DOI:10.3390/en14248240‎

‎[11] ‎ Ang, T. Z., Salem, M., Kamarol, M., Das, H. S., Nazari, M. A., & Prabaharan, N. (2022). A ‎comprehensive study of renewable energy sources: classifications, challenges and suggestions. Energy ‎strategy reviews, 43, 100939. DOI:10.1016/j.esr.2022.100939‎

‎[12] ‎ White, J. K. (2024). The truth about energy: our fossil-fuel addiction and the transition to renewables. ‎Cambridge University Press.‎

‎[13] ‎ Kabeyi, M. J. B., & Olanrewaju, O. A. (2023). Smart grid technologies and application in the sustainable ‎energy transition: a review. International journal of sustainable energy, 42(1), 685–758. ‎DOI:10.1080/14786451.2023.2222298‎

‎[14] ‎ Pollard, J. (2024). The history of power electronics: from tesla to today. ‎https://www.electropages.com/blog/2024/03/the-history-of-power-electronics

‎[15] ‎ Coltman, J. W. (1988). The transformer. Scientific american, 258(1), 86–95. ‎https://www.jstor.org/stable/24988950‎

‎[16] ‎ Skjong, E., Rødskar, E., Molinas, M., Johansen, T. A., & Cunningham, J. (2015). The marine vessel’s ‎electrical power system: from its birth to present day. Proceedings of the IEEE, 103(12), 2410–2424. ‎DOI:10.1109/JPROC.2015.2496722‎

‎[17] ‎ Rafin, S. M. S. H., Ahmed, R., Haque, M. A., Hossain, M. K., Haque, M. A., & Mohammed, O. A. (2023). ‎Power electronics revolutionized: a comprehensive analysis of emerging wide and ultrawide bandgap ‎devices. Micromachines, 14(11), 2045. DOI:10.3390/mi14112045‎

‎[18] ‎ Zhang, G., Li, Z., Zhang, B., & Halang, W. A. (2018). Power electronics converters: past, present and ‎future. Renewable and sustainable energy reviews, 81, 2028–2044. https://doi.org/10.1016/j.rser.2017.05.290‎

‎[19] ‎ Mansouri, A., Magri, A. El, Lajouad, R., Myasse, I. El, Younes, E. K., & Giri, F. (2023). Wind energy ‎based conversion topologies and maximum power point tracking: a comprehensive review and ‎analysis. E-prime - advances in electrical engineering, electronics and energy, 6, 100351. ‎DOI:10.1016/j.prime.2023.100351‎

‎[20] ‎ Dini, P., Saponara, S., & Colicelli, A. (2023). Overview on battery charging systems for electric ‎vehicles. Electronics, 12(20), 4295. https://doi.org/10.3390/electronics12204295‎

‎[21] ‎ Nasser, A. M., Refky, A., Shatla, H., & Abdel-hamed, A. M. (2024). A grey wolf optimization-based ‎modified SPWM control scheme for a three-phase half bridge cascaded multilevel inverter. Scientific ‎reports, 14(1), 7016. DOI:10.1038/s41598-024-57262-0‎

‎[22] ‎ Abri, D. Al, Malik, A. S., Al-Saadi, S., Albadi, M., Charabi, Y., & Hosseinzadeh, N. (2022). Smart grids ‎and smart buildings. In Handbook of climate change mitigation and adaptation: third edition (Vol. 4, pp. 2215–‎‎2270). Springer. DOI: 10.1007/978-3-030-72579-2_78‎

‎[23] ‎ Saianiruth, M., Vinothkumar, K., & Karthik, P. (2017). Smart grid technology and its impact on renewable ‎energy integration. 10.13140/RG.2.2.25508.14722‎

‎[24] ‎ Jemei, S., & Pahon, E. (2023). Encyclopedia of electrical and electronic power engineering. Control of fuel ‎cell systems, 3, 472–484. https://hal.science/hal-04153978/‎

‎[25] ‎ Griffiths, A. D., Herrnsdorf, J., McKendry, J. J. D., Strain, M. J., & Dawson, M. D. (2020). Gallium nitride ‎micro-light-emitting diode structured light sources for multi-modal optical wireless communications ‎systems. Philosophical transactions of the royal society a: mathematical, physical and engineering sciences, ‎‎378(2169), 20190185. DOI:10.1098/rsta.2019.0185‎

‎[26] ‎ Stanciu, L., & Diaz-Amaya, S. (2021). Introductory biomaterials: an overview of key concepts. Academic Press. ‎https://www.amazon.com/Introductory-Biomaterials-Overview-Biomedical-‎Engineering/dp/0128092637‎

‎[27] ‎ Johnson, D. E., Hilburn, J. L., Johnson, J. R., Scott, P. D., & Education, M. H. (1997). Electric circuit ‎analysis. Wiley. https://www.amazon.com/Electric-Circuit-Analysis-David-Johnson/dp/0471365718‎

‎[28] ‎ Putz, Ł., Bednarek, K., & Nawrowski, R. (2019). Disturbances generated by lighting systems with LED ‎lamps and the reduction in their impacts. Applied sciences (Switzerland), 9(22), 4894. ‎DOI:10.3390/app9224894‎

‎[29] ‎ Srivastava, A., Srivastava, P., Bajpai, S. K. and Srivastava, J. K. (2023). Electrical engineering concepts and ‎fundamentals. San International Scientific Publication. https://doi.org/10.59646/electengcon/084‎

‎[30] ‎ Wadie, F., Elsisi, M., & Eliyan, T. (2024). New multi-injection commutation topology for circuit ‎breakers of HVDC transmission lines. Scientific reports, 14(1), 3468. DOI:10.1038/s41598-024-53832-4‎

‎[31] ‎ Bird, J. (2017). Electrical circuit theory and technology. Routledge. https://doi.org/10.4324/9781315561929‎

‎[32] ‎ Fish, R. M., & Geddes, L. A. (2009). Conduction of electrical current to and through the human body: a ‎review. Eplasty, 9, e44. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2763825/‎

‎[33] ‎ Lazanas, A. C., & Prodromidis, M. I. (2023). Electrochemical impedance spectroscopy─ a tutorial. ACS ‎measurement science au, 3(3), 162–193.‎

‎[34] ‎ Zaidi, M. N., & Ali, A. (2018). Power factor improvement using automatic power factor compensation ‎‎(APFC) device for medical industries in malaysia. MATEC web of conferences (Vol. 150, p. 1004). EDP ‎Sciences. DOI: 10.1051/matecconf/201815001004‎

‎[35] ‎ Dryden, I. G. C. (2013). The efficient use of energy. Butterworth-Heinemann.‎

‎[36] ‎ Dˇzafi´c, I., Halilovi´c, E. (2013). Introduction to power system analysis. International University of ‎Sarajevo. ‎https://www.researchgate.net/publication/331928468_Introduction_to_Power_System_Analysis

‎[37] ‎ Yepes, A. G., Lopez, O., Gonzalez-Prieto, I., Duran, M. J., & Doval-Gandoy, J. (2022). A comprehensive ‎survey on fault tolerance in multiphase AC drives, part 1: general overview considering multiple ‎fault types. Machines, 10(3), 208. DOI:10.3390/machines10030208‎

‎[38] ‎ Nabidoust, F. and Nabidoust, M. (2024). AC and DC Power supply simulink in MATLAB. European ‎commercial social networking site for scientists and researchers, 1. ‎https://www.researchgate.net/publication/377415899_AC_And_DC_Power_Supply_Simulink_in_MATLAB_C

‎[39] ‎ Shariff, S. M. (2024). Single-phase robust charger with high power quality for electric vehicle ‎application. European journal of electrical engineering and computer science, 8(2), 50–70. ‎DOI:10.24018/ejece.2024.8.2.576‎

‎[40] ‎ Wahab, K., Rahal, M., & Achkar, R. (2021). Economic Improvement of power factor correction: a case ‎study. Journal of power and energy engineering, 09(06), 1–11. DOI:10.4236/jpee.2021.96001‎

‎[41] ‎ Rawlins, C. (2000). Basic AC Circuits. Newnes.‎

‎[42] ‎ Bera, T. K. (2018). Bioelectrical impedance and the frequency dependent current conduction through ‎biological tissues: a short review. IOP conference series: materials science and engineering (Vol. 331, p. ‎‎12005). IOP Publishing. DOI: 10.1088/1757-899X/331/1/012005‎

‎[43] ‎ Herrera Hernández, H., M. Ruiz Reynoso, A., C. Trinidad González, J., O. González Morán, C., G. ‎Miranda Hernández, J., Mandujano Ruiz, A., … & Orozco Cruz, R. (2020). Electrochemical impedance ‎spectroscopy (EIS): a review study of basic aspects of the corrosion mechanism applied to steels. ‎Electrochemical impedance spectroscopy, 137–144. DOI:10.5772/intechopen.94470‎

‎[44] ‎ Zhu, Q., & Su, Y. (2024). A non-inductive coil design used to provide high-frequency and large ‎currents. Sensors, 24(7), 2027. DOI:10.3390/s24072027‎

‎[45] ‎ Bukar, Y., Sanda, M. U., Grema, M. B. and Kolo, B. S. (2021). Evaluation of the probable use of neem oil ‎in capacitors and determination of dielectric constant. International journal of information, engineering and ‎technology, 11(4), 67–70. https://www.arcnjournals.org/images/GARC-IJIET-2021-11-4-10.pdf‎

‎[46] ‎ Zekry, A. (2013). Does the current flow through a capacitor, and if so, why? ‎https://www.researchgate.net/post/Does_the_current_flow_through_a_capacitor_and_if_so_why/5125fa38e4f076946500000b/citation/download

‎[47] ‎ Carter, A. (2011). How capacitors behave in AC circuits. Electrical Electronics Web. ‎https://www.eeweb.com/how-capacitors-behave-in-ac-circuits/‎

‎[48] ‎ Kamatchi, S. (n.d.). EC8453-linear integrated circuits. Jeppiaar Institute Of Technology. ‎https://www.jeppiaarinstitute.org/pdf/lectures/26.pdf

‎[49] ‎ Anthony, I. O. & Roland, U. (2017). Introduction to electrical engineering. Odus Press. ‎https://www.researchgate.net/publication/319205259_INTRODUCTION_TO_ELECTRICAL_ENGINEERING

‎[50] ‎ Adapa, R., Nilsson, S. L., Andersen, B. R., & Yang, Y. (2020). Technical description of the unified power ‎flow controller (UPFC) and its potential variations. In Flexible ac transmission systems: facts (pp. 299–‎‎351). Springer. https://doi.org/10.1007/978-3-030-35386-5_10‎

‎[51] ‎ Hindmarsh, J., & Renfrew, A. (1996). Electrical machines and drives. Elsevier.‎

‎[52] ‎ Vertigan, G. (2017). AC Circuits and Power Systems in Practice. John Wiley & Sons.‎

‎[53] ‎ McDonald, A., & Carroll, J. (2016). Design of generators for offshore wind turbines. In Offshore wind ‎farms (pp. 159–192). Elsevier. https://doi.org/10.1016/B978-0-08-100779-2.00008-8‎

‎[54] ‎ Mörée, G., & Leijon, M. (2024). Simplified current-equivalent circuit models of synchronous reluctance ‎machines and salient pole synchronous machines considering the reluctance torque. Energies, 17(5), ‎‎1015. DOI:10.3390/en17051015‎

‎[55] ‎ Eismin, T. K. (2019). Aircraft Electricity and Electronics. McGraw Hill. https://www.amazon.com/Aircraft-‎Electricity-Electronics-Seventh-Thomas/dp/126010821X

‎[56] ‎ Schumacher, B., Bach, H. G., Spitzer, P., & Obrzut, J. (2006). Electrical properties. In Springer handbook of ‎materials measurement methods (pp. 431–484). DOI: 10.1007/978-3-540-30300-8_9‎

‎[57] ‎ Osmani, K., Haddad, A., Lemenand, T., Castanier, B., Alkhedher, M., & Ramadan, M. (2023). A critical ‎review of PV systems’ faults with the relevant detection methods. Energy nexus, 12, 100257. ‎DOI:10.1016/j.nexus.2023.100257‎

‎[58] ‎ Petrenko, V. F., Sullivan, C. R., & Kozlyuk, V. (2011). Variable-resistance conductors (VRC) for power-‎line de-icing. Cold regions science and technology, 65(1), 23–28.‎

‎[59] ‎ Shaikh, S., Kumar, D., Hakeem, A., & Soomar, A. M. (2022). Protection system design of induction ‎motor for industries. Modelling and simulation in engineering, 2022(1), 7423018. DOI:10.1155/2022/7423018‎

‎[60] ‎ İnci, M., Çelik, Ö., Lashab, A., Bayındır, K. Ç., Vasquez, J. C., & Guerrero, J. M. (2024). Power system ‎integration of electric vehicles: a review on impacts and contributions to the smart grid. Applied ‎sciences (Switzerland), 14(6), 2246. DOI:10.3390/app14062246‎

‎[61] ‎ Milsom, E. (2014). Solid wall heat losses and the potential for energy saving. Bre, 44(0), 136. ‎https://assets.publishing.service.gov.uk/media/5c409bd6ed915d389d28176f/WP2_Nature_of_solid_walls_in-situ_v3.2b.pdf

‎[62] ‎ Li, B., Li, Z., & Wei, L. (2017). The design of remote temperature monitoring system. AIP conference ‎proceedings (Vol. 1864). AIP Publishing. https://doi.org/10.1063/1.4992939‎

‎[63] ‎ Hassan, I. U., Panduru, K., & Walsh, J. (2024). An in-depth study of vibration sensors for condition ‎monitoring. Sensors, 24(3), 740. DOI:10.3390/s24030740‎

‎[64] ‎ Mayergoyz, I. D., & Lawson, W. (2012). Basic electric circuit theory: a one-semester text. Gulf Professional ‎Publishing. DOI: 10.1016/C2009-1-28545-5‎

‎[65] ‎ Albert, J. R., & Stonier, A. A. (2020). Design and development of symmetrical super-lift DC-AC ‎converter using firefly algorithm for solar-photovoltaic applications. IET circuits, devices and systems, ‎‎14(3), 261–269. DOI:10.1049/iet-cds.2018.5292‎

‎[66] ‎ Faranda, R., Hafezi, H., Akkala, K., & Lazzaroni, M. (2020). AC “back to back” switching device in ‎industrial application. Energies, 13(14), 3539. DOI:10.3390/en13143539‎

‎[67] ‎ Choetchai, P., & Thanachayanont, A. (2016). A self-starting AC-to-DC step-up converter for energy ‎harvesting applications. Procedia computer science, 86, 144–147. DOI:10.1016/j.procs.2016.05.036‎

‎[68] ‎ Dobkin, B., & Williams, J. (2011). Analog circuit design: a tutorial guide to applications and solutions. ‎Elsevier.‎

‎[69] ‎ Mousavi, S. Z., & Pourabdoli, M. (2022). Silver-coated copper particles as a new raw material for ‎manufacturing electrical contacts. Microelectronics reliability, 134, 114554. ‎https://doi.org/10.1016/j.microrel.2022.114554‎

‎[70] ‎ Kgoete, F. M., Uyor, U. O., Popoola, A. P., & Popoola, O. (2024). Insight on the recent materials ‎advances for manufacturing of high-voltage transmission conductors. International journal of advanced ‎manufacturing technology, 130(9–10), 4123–4136. DOI:10.1007/s00170-023-12890-0‎

‎[71] ‎ Akbarpour, M. R., Gazani, F., Mousa Mirabad, H., Khezri, I., Moeini, A., Sohrabi, N., & Kim, H. S. ‎‎(2023). Recent advances in processing, and mechanical, thermal and electrical properties of Cu-SiC ‎metal matrix composites prepared by powder metallurgy. Progress in materials science, 140, 101191. ‎DOI:10.1016/j.pmatsci.2023.101191‎

‎[72] ‎ Zankawi, A. A. (2015). Semiconductors, diodes, transistors and applications. International journal of ‎engineering and advanced technology, 4(1), 147–155.‎

‎[73] ‎ Mazaleyrat, F. (2020). Soft magnetic materials. In Handbook of magnetism and magnetic materials (pp. 1–53). ‎Springer. https://doi.org/10.1007/978-3-030-63101-7_31-1‎

‎[74] ‎ Tian, L., Anderson, I., Riedemann, T., Russell, A., & Kim, H. (2013). Prospects for novel deformation ‎processed Al/Ca composite conductors for overhead high voltage direct current (HVDC) power ‎transmission. Electric power systems research, 105, 105–114. DOI:10.1016/j.epsr.2013.07.017‎

‎[75] ‎ Scherz, P. (2013). Practical electronics for inventors. McGraw-Hill, Inc. ‎https://dl.acm.org/doi/abs/10.5555/1593717‎

‎[76] ‎ Zandabad, Y. Y., & Fazel, S. S. (2024). A single-stage variable output AC-DC converter with PFC and ‎soft-switching for renewable energy integration. Energy reports, 11, 4873–4885. ‎DOI:10.1016/j.egyr.2024.04.054‎

‎[77] ‎ Van Mulders, J., Delabie, D., Lecluyse, C., Buyle, C., Callebaut, G., Van der Perre, L., & De Strycker, L. ‎‎(2022). Wireless power transfer: systems, circuits, standards, and use cases. Sensors, 22(15), 5573. ‎DOI:10.3390/s22155573‎

‎[78] ‎ Sheta, A. N., Abdulsalam, G. M., Sedhom, B. E., & Eladl, A. A. (2023). Comparative framework for AC-‎microgrid protection schemes: challenges, solutions, real applications, and future trends. Protection and ‎control of modern power systems, 8(2), 1–40. DOI:10.1186/s41601-023-00296-9‎

‎[79] ‎ Njema, G. G., Ouma, R. B. O., & Kibet, J. K. (2024). A review on the recent advances in battery ‎development and energy storage technologies. Journal of renewable energy, 2024(1), 2329261.‎

‎[80] ‎ Elliott, B. J. (2000). Cable engineering for local area networks. CRC Press. DOI: 10.1533/9781855738898‎

‎[81] ‎ Bohne, D. (2023). Correction to: building services and energy efficient buildings. Springer. DOI: 10.1007/978-‎‎3-658-41273-9_9‎

‎[82] ‎ Salman, H. M., Pasupuleti, J., & Sabry, A. H. (2023). Review on causes of power outages and their ‎occurrence: mitigation strategies. Sustainability, 15(20), 15001. DOI:10.3390/su152015001‎

Published

2024-08-25

How to Cite

A Comprehensive Study of the Principles and Trends in AC Circuits: Essential Component in Electro-mechanical Systems and Industries. (2024). Intelligence Modeling in Electromechanical Systems, 1(1), 17-38. https://imes.reapress.com/journal/article/view/22