On model of technological process to increase density of field-effect heterotransistors in the framework of three-stage differential amplifier. Influence of mismatch-induced stress and porosity of materials on technological process
Abstract
In this paper we introduce an approach to increase density of field-effect heterotransistors in the framework of the three-stage differential amplifier. In the framework of the approach we consider manufacturing the amplifier in heterostructure with specific configuration. Several required areas of the heterostructure should be doped by diffusion or ion implantation. After that dopant and radiation defects should by annealed framework optimized scheme. We also consider an approach to decrease value of mismatch-induced stress in the considered heterostructure. We introduce an analytical approach to analyze mass and heat transport in heterostructures during manufacturing of integrated circuits with account mismatch-induced stress.
References
- [1] V.I. Lachin, N.S. Savelov. Electronics (Rostov on Don: Phoenix, 2001).
- [2] A. Polishscuk. Modern Electronics. Issue 12. P. 8-11 (2004).
- [3] G. Volovich. Modern Electronics. Issue 2. P. 10-17 (2006).
- [4] A. Kerentsev, V. Lanin. Power Electronics. Issue 1. P. 34 (2008).
- [5] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Litvin, V.V. Milenin, A.V. Sachenko. Semiconductors. Vol. 43 (7). P. 897-903 (2009).
- [6] Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour. Der-Feng Guo. Semiconductors. Vol. 43 (7). С. 971-974 (2009).
- [7] O.V. Alexandrov, A.O. Zakhar'in, N.A. Sobolev, E.I. Shek, M.M. Makoviychuk, E.O. Parshin.Semiconductors. Vol. 32 (9). P. 1029-1032 (1998).
- [8] I.B. Ermolovich, V.V. Milenin, R.A. Red'ko, S.M. Red'ko. Semiconductors. Vol. 43 (8). P. 1016-1020 (2009).
- [9] P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi, R.G. Gordon. Appl. Phys. Lett. Vol. 102 (5). P. 053901-053905 (2013).
- [10] J.G. Reynolds, C.L. Reynolds, Jr.A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes. Appl. Phys. Lett. Vol. 102 (15). P. 152114-152118 (2013).
- [11] N.I. Volokobinskaya, I.N. Komarov, T.V. Matyukhina, V.I. Reshetnikov, A.A. Rush, I.V. Falina, A.S. Yastrebov. Semiconductors. Vol. 35 (8). P. 1013-1017 (2001).
- [12] E.L. Pankratov, E.A. Bulaeva. Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013).
- [13] S.A. Kukushkin, A.V. Osipov, A.I. Romanychev. Physics of the Solid State. Vol. 58 (7). P. 1448-1452 (2016).
- [14] E.M. Trukhanov, A.V. Kolesnikov, I. D. Loshkarev. Russian Microelectronics. Vol. 44 (8). P. 552-558 (2015).
- [15] E.L. Pankratov, E.A. Bulaeva. Reviews in Theoretical Science. Vol. 3 (4). P. 365-398 (2015).
- [16] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong. Appl. Phys. Lett. Vol. 89 (17). P. 172111-172114 (2006).
- [17] Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N. Drozdov, V.D. Skupov. Radiophysics and Quantum Electronics. Vol. 43 (3). P. 836-843 (2003).
- [18] Y. Fang, J. He, D. Yu, H. Wang, Sh. Chang, Q. Huang, Zh. Tong. Analog Integrated Circuits and Signal Processing. Vol. 101 (2). P. 229–235 (2019).
- [19] Y.W. Zhang, A.F. Bower. Journal of the Mechanics and Physics of Solids. Vol. 47 (11). P. 2273-2297 (1999).
- [20] L.D. Landau, E.M. Lefshits. Theoretical physics. 7 (Theory of elasticity) (Moscow: Physmatlit, 2001).
- [21] M. Kitayama, T. Narushima, W.C. Carter, R.M. Cannon, A.M. Glaeser. J. Am. Ceram. Soc. Vol. 83. P. 2561 (2000); M. Kitayama, T. Narushima, A.M. Glaeser. J. Am. Ceram. Soc. Vol. 83. P. 2572 (2000).
- [22] P.G. Cheremskoy, V.V. Slesov, V.I. Betekhtin. Pore in solid bodies (Moscow: Energoatomizdat, 1990).
- [23] Z.Yu. Gotra. Technology of microelectronic devices (Moscow: Radio and communication, 1991).
- [24] P.M. Fahey, P.B. Griffin, J.D. Plummer. Rev. Mod. Phys. Vol. 61 (2). P. 289-388 (1989).
- [25] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. (Kiev: Naukova Dumka 1979).
- [26] M.G. Mynbaeva, E.N. Mokhov, A.A. Lavrent'ev, K.D. Mynbaev, Techn. Phys. Lett. Vol. 34 (17). P. 13 (2008).
- [27] Yu.D. Sokolov. Applied Mechanics. Vol.1 (1). P. 23-35 (1955).
- [28] E.L. Pankratov. Russian Microelectronics. Vol. 36 (1). P. 33-39 (2007).
- [29] E.L. Pankratov. Int. J. Nanoscience. Vol. 7 (4-5). P. 187-197 (2008).
- [30] E.L. Pankratov, E.A. Bulaeva. Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013).
- [31] E.L. Pankratov, E.A. Bulaeva. Int. J. Micro-Nano Scale Transp. Vol. 3 (3). P. 119-130 (2012).
- [32] E.L. Pankratov, E.A. Bulaeva. International Journal of Modern Physics B. Vol. 29 (5). P. 1550023-1-1550023-12 (2015).
- [33] E.L. Pankratov. J. Comp. Theor. Nanoscience. Vol. 14 (10). P. 4885-4899 (2017).
- [34] E.L. Pankratov, E.A. Bulaeva. Materials science in semiconductor processing. Vol. 34. P. 260-268 (2015).
- [35] E.L. Pankratov, E.A. Bulaeva. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014).
- [36] E.L. Pankratov, E.A. Bulaeva. Multidiscipline modeling in materials and structures. Vol. 12 (4). P. 578-604 (2016).