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Abstract

In this paper, we analyze the variation of charge carrier transport velocity under different operational conditions. The
study investigates the effects of parameters such as temperature, electric field strength, carrier mobility, doping
concentration, and effective mass on both drift and thermal components of carrier velocity. Based on the results, we
formulate practical recommendations for adjusting these conditions to achieve desired carrier velocities, which can
enhance the performance and efficiency of micro- and nanoelectronics devices. The findings provide insights into

optimizing charge transport for advanced semiconductor applications.

Keywords: Charge carrier transport, Velocity control, Drift and thermal velocity, Semiconductor device
optimization.

1| Introduction

technologies, serves as a critical foundation for the advancement of modern integrated circuits [1-3].
Achieving higher performance, increased integration density, and improved energy efficiency in integrated
circuits relies heavily on the design and refinement of individual device components. Consequently, both
during the fabrication of new device architectures and in the enhancement of existing structures, it is essential
to perform a comprehensive analysis of the physical, electrical, and technological processes that govern device
operation [3, 4].

Among the most significant factors affecting device performance is the transport behavior of charge carriers,
particularly their velocity, mobility, and response to varying operational conditions [5-7]. Variations in
material properties, layer thicknesses, doping profiles, temperature, and applied electric fields can all influence
carrier dynamics, thereby directly impacting switching speeds, current density, and overall device efficiency
[7-11]. In this study, we focus specifically on the dynamics of charge carrier velocity and investigate how
changes in transport conditions alter their behavior [12—15]. By understanding these effects in detail, it
becomes possible to optimize device performance, guide the design of high-speed and high-density micro-
and nanoelectronics systems, and predict operational reliability under various environmental and electrical
conditions [16-19].
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2| Methodology

The velocity of charge carriers in a semiconductor can be decomposed into two primary components: the
thermal velocity vy and the drift velocity vy, [20]. The magnitudes of these components are given by the
relations:

vr = %.Vdr = pE. M

where T is the absolute temperature, k = 1.38 x 107%® ] /K is the Boltzmann constant, m is the effective mass
of the charge carriers, u is their mobility, and E is the magnitude of the applied electric field. From these
expressions, it is evident that the charge carrier velocity decreases inversely with the square root of the carrier
mass and increases linearly with the electric field strength. Furthermore, the drift velocity depends directly on
the carrier mobility, which itself is temperature-dependent. The qualitative temperature dependence of

mobility can be expressed as Eq. 2:

(T =aTexp (—bT), 2)

where a and bare material-specific, temperature-independent parameters. At elevated temperatures, the

mobility follows an approximate power-law relation:

u(T) = po T73/2, ©)
Indicating that carrier mobility decreases with increasing temperature due to enhanced phonon scattering [21].

Consequently, the charge carrier velocity exhibits a maximum at a characteristic temperature T,,,,, which can
be determined by differentiating the velocity with respect to temperature and solving for the extremum:

Towe = o @

Figs. 1-3 illustrate the calculated dependencies of charge carrier velocity on temperature and electric field
strength. These results highlight the non-monotonic behavior of carrier velocity as a function of temperature
and demonstrate the interplay between thermal motion and drift under varying electric field conditions.
Understanding these dependencies is essential for optimizing the performance of micro- and nanoelectronics

devices under different operating environments.
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Fig. 1. Typical dependence of the velocity of charge

carriers on their mass.
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Fig. 2. The typical dependence of the velocity of charge
carriers on the strength of electric field.

Figs. 1 and 2 collectively illustrate the fundamental dependencies of charge carrier velocity on temperature,
electric field strength, and mobility. Fig. 7 shows that the total carrier velocity, resulting from the combination
of thermal and drift components, exhibits a non-monotonic behavior as a function of temperature. At lower
temperatures, the drift velocity dominates due to relatively high mobility, while the thermal velocity is small.
As temperature increases, thermal velocity rises, contributing increasingly to the total carrier motion.
However, the drift component begins to decrease at elevated temperatures because carrier mobility diminishes

due to enhanced phonon scattering, as described by p(T) ~ T~3/2

. This interplay generates a maximum in the
total velocity at an intermediate temperature Ty, representing the optimal balance between drift and thermal
contributions. Fig. 2, on the other hand, isolates the effect of catrier mobility under a fixed electric field,
ignoring temperature dependence. Here, a clear linear relationship between mobility and drift velocity is
observed, indicating that higher mobility directly enhances carrier transport efficiency. When interpreted
together, these figures emphasize that both intrinsic material properties, such as mobility and effective mass,
and external operating conditions, such as temperature and applied electric field, are critical determinants of
carrier dynamics. Optimizing these parameters is therefore essential for improving switching speed, current
density, and overall performance in micro- and nanoelectronics devices.

Similarly, the relationship between charge carrier velocity and mobility can be examined independently of its
temperature dependence. In this simplified scenario, the drift velocity is directly proportional to the mobility,
and variations in the electric field dominate the carrier transport behavior. This approximation allows for an
initial assessment of device performance under controlled conditions, isolating the effect of mobility from
thermal influences. However, for more accurate modeling and realistic device operation, the temperature
dependence of mobility must subsequently be incorporated, as it significantly affects both the magnitude and
dynamics of charge carrier transport.
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Fig. 3. Typical dependence of the velocity of charge

carriers on temperature.
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Fig. 3 illustrates the typical dependence of the total charge catrier velocity on temperature under varying
electric field strengths. The solid lines represent the combined effect of thermal and drift components,
Z

dr*

calculated as v = {/vZ + v3. At lower temperatures, the drift component predominates, resulting in a neatly
linear increase in total velocity with increasing electric field. As temperature rises, thermal velocity contributes
more significantly to the overall carrier motion, while drift velocity decreases due to the reduction in mobility
caused by enhanced phonon scattering. This interaction leads to a characteristic maximum in the total velocity
at an intermediate temperature, corresponding to the optimal balance between thermal and drift effects.
Furthermore, the figure demonstrates that stronger electric fields shift the maximum velocity to slightly higher
values and increase the overall magnitude of carrier velocity, highlighting the combined influence of both
matetial properties and external operational conditions. This behavior underlines the importance of carefully
controlling temperature and electric field conditions in micro- and nanoelectronics devices to achieve optimal

performance and reliable operation.

Figs. 4-8 collectively illustrate the fundamental dependencies of charge carrier transport on electric field,
temperature, doping concentration, and material properties. Fig. 4 demonstrates the drift velocity vy, as a
function of electric field E at various fixed temperatures, showing a near-linear increase at lower temperatures
and a slower rise at higher temperatures due to mobility reduction from enhanced phonon scattering. Fig. 5
highlights the temperature dependence of carrier mobility p for different doping levels, where higher doping
concentrations lead to stronger impurity scattering and a more pronounced reduction in mobility at elevated
temperatures. Ijg. 6 separates the thermal and drift components of carrier velocity, illustrating that thermal
velocity vt increases with temperature while drift velocity decreases, explaining the characteristic maximum

in total velocity observed at intermediate temperatures. Fig. 7 presents a three-dimensional surface of total

carrier velocity v = {/vi + v, as a function of both temperature and electric field, revealing that optimal
velocity occurs at an intermediate temperature and high electric field, emphasizing the interplay between
intrinsic material properties and operational conditions. Finally, Figure 8 examines the effect of effective mass
m”" on total carrier velocity, demonstrating that reducing the effective mass significantly enhances velocity,
underlining the importance of material selection and engineering for high-performance micro- and
nanoelectronics devices. Together, these analyses provide a comprehensive understanding of how external
and intrinsic factors govern charge carrier dynamics and guide the optimization of device performance
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Fig. 4. Drift velocity vs electric field at fixed temperatures.
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Fig. 5. Catrier mobility vs temperature for different doping levels.
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Fig. 6. Thermal and drift velocity components vs temperature.

Fig. 7. 3D surface of total velocity vs temperature and electric field.
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Fig. 8. Effect of effective mass on carrier velocity.

3| Conclusion

In this paper, a comprehensive analysis of the dynamics of charge carrier transport under varying operational
conditions was conducted. The study examined the effects of temperature, electric field strength, carrier
mobility, doping concentration, and effective mass on both thermal and drift components of carrier velocity.
Based on the results, clear trends were identified, including the presence of an optimal temperature at which
total carrier velocity reaches its maximum, the linear enhancement of drift velocity with increased mobility or
electric field, and the significant influence of effective mass on transport efficiency. Furthermore, practical
recommendations were formulated for accelerating or decelerating carrier transport by adjusting the relevant
parameters, providing valuable guidance for the design and optimization of micro- and nanoelectronics
devices. Overall, the findings contribute to a deeper understanding of carrier dynamics and offer a framework
for improving the performance and reliability of advanced electronic circuits.
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